
PrestaShop Developer Guide

 The technical documentation is currently being updated. Some aspects

of it might not yet be fully updated. Do not hesitate to contact us if you
have any issue with the documentation.

Fundamentals

Concepts

 You should be familiar with PHP and Object-Oriented Programming
before attempting to write your own module.

PrestaShop was conceived so that third-party modules could easily upon
its foundations, making it an extremely customizable e-commerce

software.

A module is an addition to PrestaShop that enables any developer to add
the following:

 Provide additional functionality to PrestaShop.
 View additional items on the site (product selection, etc..).

 Communicate with other e-commerce players (buying guides,
payment platforms, logistics...)

 etc...

The company behind PrestaShop provides more than 100 modules for free
with the tool itself, enabling you to launch your business quickly and for

free.

More than 750 add-ons are also available at the official add-ons site.

These additional modules were built by the PrestaShop comapny or
members of the PrestaShop community, and are sold at affordable prices.

As a developer, you can also share your modules on this site, and receive
70% of the amounts associated with the sale of your creations. Sign up

now!

PrestaShop's technical architecture

PrestaShop is based on a 3-tier architecture:

 Object/data. Database access is controlled through files in the
"classes" folder.

 Data control. User-provided content is controlled by files in the
root folder.

 Design. All of the theme's files are in the "themes" folder.

mailto:xavier.borderie@prestashop.com
http://addons.prestashop.com/
http://addons.prestashop.com/en/authentication.php#createnow
http://addons.prestashop.com/en/authentication.php#createnow
http://en.wikipedia.org/wiki/Multitier_architecture#Three-tier_architecture

This is the same principle as the Model–view–controller (MVC)
architecture, only in a simpler and more accessible way.

Our developer team chose not to use a PHP framework, such as Zend

Framework, Symfony or CakePHP, so as to allow for better readability,
and thus faster editing.

This also makes for higher performances, since the software is only made
of the lines of code it requires, and does not contain a bunch of

supplemental generic libraries.

A 3-tier architecture has many advantages:

 It's easier to read the software's code.

 Developers can add and edit code faster.
 Graphic designer and HTML integrators can work with the confines

of the /themes folder without having to understand or even read a

single line of PHP code.

 Developers can work on additional data and modules that the HTML
integrators can make use of.

Database schema

You can download the PrestaShop 1.4 SQL schema in PNG form (1 Mb), or
in the original MySQL Workbench file format (you will need MySQL

Workbench to view it).

What is a PrestaShop module

PrestaShop's extensibility revolves around modules, which are small
programs that make use of PrestaShop's functionality and changes them
or add to them in order to make PrestaShop easier to use or more

customized.

Technical principles behind a module

A PrestaShop module consists of:

 A root folder, named after the module, which will hold all of the

module's files, and will reside in PrestaShop's /modules folder.

 A main PHP file, named after the module, located in that root folder.
This PHP file should have the same name as its root folder.

 An icon file, named logo.gif, representing this module.

 Optional: some .tpl files, containing the module's theme.

 Optional: language files, if the module or its theme have text to

display (and therefore, that should be translatable).

 Optional: in a /themes/modules folder, a folder with the same name as

the module, containing .tpl and language files if necessary. This last

folder is essential during modifications of existing module, so that

you can adapt it without having to touch its original files. Notably, it

http://doc.prestashop.com/download/attachments/1409078/ps144-dbmodel4.png
http://doc.prestashop.com/download/attachments/3801153/ps144-dbmodel4.mwb
http://wb.mysql.com/
http://wb.mysql.com/

enables you to handle the module's display in various ways,

according to the current theme.

Let's see an example with PrestaShop's blockuserinfo module:

Any PrestaShop module, once installed on an online shop, can interact
with one or more "hooks". Hooks enable you to "hook" your code to the

current View at the time of the code parsing (i.e., when displaying the cart
or the product sheet, when displaying the current stock...). Specifically, a

hook is a shortcut to the various methods available from the Module
object, as assigned to that hook.

A list of PrestaShop hooks

Here's a recap of PrestaShop's module architecture:

When one of the site's pages is loaded, the PrestaShop engine check

which are the modules to call for each of the hooks that make up the
page.

Here is a list of 53 hooks, available in PrestaShop.

Front-office

Homepage and general website items

Hook name File
location

Visible Description

header header.php No Called between the HEAD tags.

Ideal location for adding JavaScript
and CSS files.

top header.php Yes Called in the page's header.

leftColumn header.php Yes Called when loading the left
column.

rightColumn footer.php Yes Called when loading the right

column.

footer footer.php Yes Called in the page's footer.

home index.php Yes Called at the center of the

homepage.

Product sheet

Hook name File

location

Visible Description

extraLeft product.php Yes Called right before the

"Print" link, under the

picture.

extraRight product.php Yes Called right after the block

for the "Add to Cart" button.

productActions product.php Yes Called inside the block for
the "Add to Cart" button,

right after that button.

productOutOfStock product.php Yes Called inside the block for
the "Add to Cart" button,

right after the "Availability"
information.

productfooter product.php Yes Called right before the tabs.

productTab product.php Yes Called in tabs list, such as

"More info", "Data sheet",
"Accessories"... Ideal

location for one more tab,
the content of which is

handled by the

productTabContent hook.

productTabContent product.php Yes Called when a tab is clicked.

Ideal location for the
content of a tab that has

been defined using the

productTab hook.

Cart

Hook name File location Visible Description

cart Class: Cart.php No Called right after a

cart creation or
update.

shoppingCart order.php Yes Called right below

the cart items
table.

shoppingCartExtra order.php Yes Called after the

cart's table of
items, right above

the navigation
buttons.

createAccountTop authentication.php Yes Called within the

client account
creation form, right

above the the
"Your personal

information" block.

createAccountForm authentication.php Yes Called within the
client account

creation form, right
before the

"Register" button.

createAccount authentication.php No Called right after
the client account

creation.

customerAccount my-account.php Yes Called on the client
account

homepage, after
the list of available

links. Ideal location
to add a link to this

list.

myAccountBlock Module:
blockmyaccount.php

Yes Called within the
"My account"

block, in the left
column, below the

list of available
links. Ideal location

to add a link to this
list.

authentication authentication.php No Called right after
the client

identification, only
if the

authentication is
valid (e-mail

address and
password are both

OK).

Search

Hook

name

File

location

Visible Description

search Class:

Search.php

No Called after a search is performed.

Ideal location to parse and/or handle

the search query and results.

Carrier choice

Hook name File
location

Visible Description

extraCarrier order.php Yes Called after the list of available

carriers, during the order process.
Ideal location to add a carrier, as

added by a module.

Payment

Hook name File location Visible Description

payment order.php Yes Called when needing
to build a list of the

available payment
solutions, during the

order process. Ideal
location to enable the

choice of a payment
module that you have

developed.

paymentReturn order-
confirmation.php

Yes Called when the user
is sent back to the

store after having
paid on the 3rd-party

website. Ideal location
to display a

confirmation message
or to give some

details on the
payment.

orderConfirmation order-

confirmation.php

Yes A duplicate of

paymentReturn.

backBeforePayment order.php No Called when
displaying the list of

available payment
solutions. Ideal

location to redirect
the user instead of

displaying said list
(i.e., 1-click PayPal

checkout)..

Merchandise Returns

Hook name File

location

Visible Description

orderReturn order-

follow.php

No Called when the customer request to

send his merchandise back to the

store, and if now error occurs.

PDFInvoice Class:

PDF.php

Yes Called when displaying the invoice in

PDF format. Ideal location to display
dynamic or static content within the

invoice.

Back-office

General

Hook name File location Visible Description

backOfficeTop header.inc.php Yes Called within the header,
above the tabs.

backOfficeHeader header.inc.php No Called between the HEAD

tags. Ideal location for
adding JavaScript and CSS

files.

backOfficeFooter footer.inc.php Yes Called within the page
footer, above the "Power

By PrestaShop" line.

backOfficeHome index.php Yes Called at the center of the
homepage.

Orders and order details

Hook name File location Visible Description

newOrder Class:

PaymentModule.php

No Called during

the new order
creation

process, right
after it has

been created.

paymentConfirm Class: Hook.php No Called when an
order's status

becomes

"Payment
accepted".

updateOrderStatus Class:

OrderHistory.php

No Called when an

order's status
is changed,

right before it
is actually

changed.

postUpdateOrderStatus Class:
OrderHistory.php

No Called when an
order's status

is changed,
right after it is

actually
changed.

cancelProduct AdminOrders.php No Called when an

item is deleted
from an order,

right after the
deletion.

invoice AdminOrders.php Yes Called when

the order's
details are

displayed,
above the

Client
Information

block.

adminOrder AdminOrders.php Yes Called when
the order's

details are
displayed,

below the
Client

Information

block.

orderSlip AdminOrders.php No Called during

the creation of
a credit note,

right after it

has been
created.

Products

Hook name File location Visible Description

addproduct AdminProducts.php No Called when a

product is created
or duplicated, right

after said
creation/duplication.

updateproduct AdminProducts.php No Called when a

product is update
with a new picture,

right after said
update.

deleteproduct Class: Product.php No Called when a

product is deleted,
right before said

deletion..

updateQuantity Class:
PaymentModule.php

No Called during an the
validation of an

order, the status of
which being

something other
than "canceled" or

"Payment error", for
each of the order's

items.

updateProductAttribute Class: Product.php No Called when a
product declination

is updated, right
after said update.

watermark AdminProducts.php No Called when an

image is added to
an product, right

after said addition.

Statistics

Hook name File location Visible Description

GraphEngine Class:
ModuleGraph.php

Yes Called when a stats
graph is displayed.

GridEngine Module:

GridEngine.php

Yes Called when the

grid of stats is
displayed.

AdminStatsModules AdminStatsTab.php Yes Called when the list

of stats modules is
displayed.

Clients

Hook name File location Visible Description

adminCustomers AdminCustomers.php Yes Called when a client's

details are displayed,
right after the list of

the clients groups the
current client belongs

to.

Carriers

Hook name File location Visible Description

updateCarrier AdminCarriers.php No Called during a carrier's
update, right after said

update.

Creating a PrestaShop module

Modules' operating principles

Modules are the ideal way to let your talent and imagination as a
developer express themselves, as the creative possibilities are many.

They can display a variety of content (blocks, text, etc.), perform many

tasks (batch update, import, export, etc.), interface with other tools...

Modules can be made as configurable as necessary; the more configurable
it is, the easier it will be to use, and thus will be able to address the need

of a wider range of users.

One of the main interest of a module is to add functionalities to

PrestaShop without having to edit its core files, this making it easier to
perform an update without having the transpose all core changes.

That is way you should always strive to stay away from core files when

building a module, even though this can prove hard to do in some
situations...

Module file tree

All PrestaShop modules are found in the /modules folder, which is at the

root of the PrestaShop main folder. This is true for both default modules

(provided with PrestaShop) and 3rd-party modules that are subsequently

installed.

Each module has its own sub-folder inside the /modules folder: /bankwire,

/birthdaypresent, etc.

Basic structure of a module

All modules use the same basic structure, which makes it easier to learn
by observing existing modules' source code.

Let's create a simple first module; this will enable us to better describe its
structure. We'll call it "My module".

Let's first create the module folder. It should have the same name as the

module, with no space, only alphanumerical characters, the hyphen and

the underscore, all in lowercase: /mymodule.

This folder must contain a PHP file of the same name, which will handle

most of the processing: mymodule.php.

That is enough for a very basic module, but obviously more files and

folders can complement it.

The front-office part of the module is defined in a .tpl file placed at the

root of the module's folder. TPL files can have just about any name. It

there's only one such file, it is good practice to give it the same name as

the folder and main file: mymodule.tpl.

The mymodule.php file must start with the following test:

if (!defined('_PS_VERSION_'))

 exit;

This checks for the existence of a PHP constant, and if it doesn't exist, it
quits. The sole purpose of this is to prevent visitors to load this file
directly.

The file must also contain the module's class. PrestaShop uses Object-
Oriented programming, and so do its modules.

That class must bear the same name as the module and its folder, in

CamelCase: MyModule.

Furthermore, that class must extend the Module class, and thus inherits all

methods and attributes. It can just as well extend any class derived from

Module: PaymentModule, ModuleGridEngine, ModuleGraph...

mymodule.php

<?php

if (!defined('_PS_VERSION_'))

 exit;

class MyModule extends Module

 {

 public function __construct()

 {

 $this->name = 'mymodule';

 $this->tab = 'Test';

 $this->version = 1.0;

 $this->author = 'Firstname Lastname';

 $this->need_instance = 0;

 parent::__construct();

 $this->displayName = $this->l('My module');

 $this->description = $this->l('Description of my module.');

 }

 public function install()

 {

 if (parent::install() == false)

 return false;

 return true;

 }

 }

?>

Let's examine each line from our MyModule object...

http://en.wikipedia.org/wiki/CamelCase

public function __construct()

Defines the class' constructor.

$this->name = 'mymodule';

$this->tab = 'Test';

$this->version = 1.0;

$this->author = 'PrestaShop';

This section assigns a handful of attributes to the class instance (this):

 A 'name' attribute. This is an internal identifier, so make it unique,

without special characters or spaces, and keep it lower-case.
 A 'tab' attribute. This is the title for the table that shall contain this

module in PrestaShop's back-office modules list. You may use an

existing name, such as Products, Blocks or Stats, or a custom, as we

did here. In this last case, a new table will be created with your title.
 Version number for the module, displayed in the modules list.

 An 'author' attribute. This is displayed in the PrestaShop modules
list.

$this->need_instance = 0;

The need_instance flag indicates whether to load the module's class when

displaying the "Modules" page in the back-office. If set at 0, the module
will not be loaded, and therefore will spend less resources to generate the

page module. If your module needs to display a warning message in the
"Modules" page, then you must set this attribute to 1.

parent::__construct();

Calling the parent's constructor. This must be done before any use of the

$this->l() method, and after the creation of $this->name.

$this->displayName = $this->l('My module');

Assigning a public name for the module, which will be displayed in the

back-office's modules list.

The l() method is part of PrestaShop translation's tools, and is explained

further below.

$this->description = $this->l('Description of my module.');

Assigning a public description for the module, which will be displayed in
the back-office's modules list.

public function install()

 {

 return (parent::install());

 }

In this first and extremely simplistic incarnation, this method is useless,

since all it does is check the value returned by the Module class' install()
method. Moreover, if we hadn't created that method, the superclass'

method would have been called instead anyway, making the end result
identical.

Nevertheless, we must mention this method, because it will be very useful
once we have to perform checks and actions during the module's

installation process: creating SQL tables, copying files, creation
configuration variables, etc.

Likewise, the module should contain an uninstall() method, so as to have

a custom uninstallation process. This method could look as such:

public function uninstall()

 {

 if (!parent::uninstall())

 Db::getInstance()->Execute('DELETE FROM `' . _DB_PREFIX_ . 'mymodule`'

);

 parent::uninstall();

 }

To put the finishing touch to this basic module, we can add an icon, which
will be displayed next to the module's name in the back-office modules
list.

The icon file must respect these requirements:

 16*16 image.

 named logo.gif.

 placed on the module's main folder.

You can find an excellent set of free icons to pick from on the FamFamFam

website.

Now that all basics are in place, put the module's folder in the /modules

folder of your PrestaShop test install, open PrestaShop, and in the
"Modules" tab, under "Other Modules", you should find your module.

Install it in order to be able to manage it for the rest of this guide.

http://www.famfamfam.com/lab/icons/silk/
http://www.famfamfam.com/lab/icons/silk/

PrestaShop automatically creates a small config.xml file in the module's

folder, which stores a few configuration information. You should NEVER

edit it by hand.

On installation, PrestaShop also adds a line to the ps_module SQL table.

Hooking a module

Displaying data, starting a process at a specific time: in order for a
module to be "attached" to a location on the front-office or the back-

office, you need to give it access to one of the many PrestaShop hooks,
described earlier in this guide.

To that effect, we are going to change your module's code, and add these

lines:

mymodule.php (partial)

public function install()

 {

 if (parent::install() == false OR !$this->registerHook('leftColumn'))

 return false;

 return true;

 }

...

public function hookLeftColumn($params)

 {

 global $smarty;

 return $this->display(__FILE__, 'mymodule.tpl');

 }

public function hookRightColumn($params)

 {

 return $this->hookLeftColumn($params);

 }

Let's explore these new or changed lines.

if (parent::install() == false OR !$this->registerHook('leftColumn'))

 return false;

return true;

We changed the original line to add a second test.

This code checks:

 the boolean value returned by the Module class' install() method: if

true, the module is installed and can be used.

 the boolean value returned by registerHook() for the leftColumn

hook: if true, the module is indeed registered to the hook it needs,

and can be used.

If any of these two boolean values is false, install() returns false too,

and the module cannot be installed. Both values have to be true for the

module to be considered installed.

Therefore, this line now reads this way: if installation or hooking fail, we
inform PrestaShop.

public function hookLeftColumn($params)

 {

 global $smarty;

 return $this->display(__FILE__, 'mymodule.tpl');

 }

The hookLeftColumn() method makes it possible for the module to hook into

the theme's left column.

$smarty is the global variable for the Smarty template system, which

PrestaShop uses, and which we need to access.

The display() method returns the content of the mymodule.tpl template file,

if it exists.

public function hookRightColumn($params)

 {

 return $this->hookLeftColumn($params);

 }

Likewise, hookRightColumn() gives access to the theme's right column. In

this example, we simply call the hookLeftColumn() method, in order to have

the very same display, whatever the column.

Save your file, and already you can hook it into the theme, move it
around and transplant it: go to the "Positions" sub-tab for the "Modules"

tab in the back-office, then click on the "Transplant a module" link.

In the transplantation form, find "My module" in the modules drop-down

menu, then choose "Left column blocks" in the "Hook into" drop-down
menu.

 It is useless to try to attach a module to a hook for which it has no

implemented method.

Save. The "Positions" page should reload, with the following message:

"Module transplanted successfully to hook". Congratulations! Scroll down,
and you should indeed see your module among the other modules from

the "Left column blocks" list. Move it to the top of the list.

Displaying content

Now that we have access to the left column, we should display something
there.

As said earlier, the content to be displayed in the theme should be stored

in .tpl files. We will create the mymodule.tpl file, which was passed as a

parameter of the display() method in our module's code.

So, let's create the mymodule.tpl file, and add some lines of code to it.

mymodule.tpl

<!-- Block mymodule -->

<div id="mymodule_block_left" class="block">

 <h4>Welcome!</h4>

 <div class="block_content">

 <a href="{$base_dir}modules/mymodule/mymodule_page.php"

title="Click this link">Click me!

 </div>

</div>

<!-- /Block mymodule -->

Save the file in the module's root folder, reload your shop's homepage: it

should appear on top of the left column, right below the shop's logo.

The displayed link doesn't lead anywhere for now. If you need to test it,

add the needed mymodule_page.php file in the module's folder, with a

minimal content, such as "Welcome to my shop!" The resulting page will
be very raw, so let's see if we can use the theme's style instead.

As you would expect, we have to create a TPL file in order to use the

theme's style. Let's create the mymodule_page.tpl file, which will contain the

basic line, and call that file from mymodule_page.php, which will add the

theme's header, footer, etc.

 You should strive to use explicit and recognizable names for your TPL

files, so that you can find them quickly in the back-office – which is a
must when using the translation tool.

mymodule_page.tpl

Welcome to my shop!

mymodule_page.php

<?php

global $smarty;

include('../../config/config.inc.php');

include('../../header.php');

$smarty->display(dirname(__FILE__) . '/mymodule_page.tpl');

include('../../footer.php');

?>

We first load the current Smarty instance. This must be done before any

call to the display() method.

The various include() calls in the file enable us to load:

 The current PrestaShop configuration.

 The theme's header file (through header.php, which acts as a load

file).

 the theme's footer file (through footer.php, which acts as a load file).

In the middle of these, we place your custom template file, whose single

action will be to display the "Welcome to my shop!" line.

Save all files and reload your shop's homepage: with just a few lines, the
end result is so much better, with our "Welcome" line neatly placed

between header, footer and columns!

 If you make multiple changes and reloads to your homepage, it may

seem said changes do not apply. This is because Smarty caches a
compiled version of the homepage. In order to force Smarty to

recompile templates on every invocation, you must go to "Preferences"

tab, its "Performance" sub-tab, and choose "Yes" for the "Force
recompile" option.

Do not force recompilation on production sites, as it severely

slows everything down!

Using Smarty

Smarty is a PHP template engine, and is used by PrestaShop's theming
system.

It parses TPL files, looking for dynamic elements to replace by their data
equivalents, then displays the generated result. Those dynamic elements

are indicated with curly brackets : { ... }. The programmer may create

new variables and use them in TPL files.

For instance, in our mymodule_page.php, we can create such a variable:

mymodule_page.php

<?php

global $smarty;

include('../../config/config.inc.php');

include('../../header.php');

$mymodule = new MyModule();

$message = $mymodule->l('Welcome to my shop!');

$smarty->assign('messageSmarty', $message); // creation of our variable

$smarty->display(dirname(__FILE__) . '/mymodule_page.tpl');

include('../../footer.php');

?>

From there on, we can ask Smarty to display the content of this variable
in our TPL file.

mymodule_page.tpl

{$messageSmarty}

PrestaShop includes a number of variables. For instance,

{$HOOK_LEFT_COLUMN} will be replaced with the content for the left
column, meaning the content from all the modules that have been

attached to the left column's hook.

All Smarty variables are global. You should therefore pay attention not to
name your own variable with the name of an existing Smarty variable, in

order to avoid overwriting it. It is good practice to avoid overly simple

names, such as products, and to prefix it with your module's name, or

even your own name, such as: {$mark_mymodule_product}.

Here is a list of Smarty variables that are common to all pages:

File / folder Description

img_ps_dir URL for the PrestaShop image folder.

img_cat_dir URL for the categories images folder.

img_lang_dir URL for the languages images folder.

img_prod_dir URL for the products images folder.

img_manu_dir URL for the manufacturers images folder.

img_sup_dir URL for the suppliers images folder.

img_ship_dir URL for the carriers (shipping) images folder.

img_dir URL for the theme's images folder.

css_dir URL for the theme's CSS folder.

js_dir URL for the theme's JavaScript folder.

tpl_dir URL for the current theme's folder.

modules_dir URL the modules folder.

mail_dir URL for the mail templates folder.

pic_dir URL for the pictures upload folder.

lang_iso ISO code for the current language.

come_from URL for the visitor's origin.

shop_name Shop name.

cart_qties Number of products in the cart.

cart The cart.

currencies The various available currencies.

id_currency_cookie ID of the current currency.

currency Currency object (currently used currency).

cookie User cookie.

languages The various available languages.

logged Indicates whether the visitor is logged to a

customer account.

page_name Page name.

customerName Client name (if logged in).

priceDisplay Price display method (with or without taxes...).

roundMode Rounding method in use.

use_taxes Indicates whether taxes are enabled or not.

If you need to have all of the current page's Smarty variables displayed,
add the following function:

{debug}

Comments are based on asterisk:

{* This string is commented out *}

{*

This string is too!

*}

Unlike with HTML comments, commented-out Smarty code is not present
in the final output file.

Module translation

Our module's text strings are written in English, but we might want French

shop owners to use our module too. We therefore have to translate those
strings into French, both front-office and back-offices ones. This could be

a tedious task, but Smarty and PrestaShop's own translation make it far
easier.

Strings in PHP files will need to be displayed through the l() method, from

the Module.php abstract class.

mymodule.php (partial)

...

$this->displayName = $this->l('My module');

$this->description = $this->l('Description of my module.');

...

Strings in TPL files will need to be turned into dynamic content, which
Smarty will replace by the translation for the chosen language. In our
sample module, this file:

mymodule.tpl (partial)

 <a href="{$base_dir}modules/mymodule/mymodule_page.php" title="Click this

link">Click me!

...becomes:

mymodule.tpl (partial)

 <a href="{$base_dir}modules/mymodule/mymodule_page.php" title="{l

s='Click this link' mod='mymodule'}">{l s='Click me!' mod='mymodule'}

...and this one:

mymodule_page.tpl

<h4>Welcome!</h4>

...

Click me!

...becomes:

mymodule.tpl

<h4>{l s='Welcome!' mod='mymodule'}</h4>

...

{l s='Click me!' mod='mymodule'}

The translation tool needs the mod parameter in order to match the string

to translate with its translation.
Strings are delimited with single quotes. If a string contains single quotes,

they should be escaped using a backslash ().

This way, strings can be directly translated inside PrestaShop: go to the

"Tools" tab, its "Translations" sub-tab, and in the "Modify translations"
drop-down menu, choose "Module translations", then click the French flag

in order to translate modules into French.

The next page displays all the strings for all the currently-installed
modules. Modules that have all their strings already translated have their

fieldset closed, whereas if at least one string is missing in a module's

translation, its fieldset is expanded.
In order to translate your module's strings (the ones that were "marked"

using the l() method), simply find your module in the list (use the

browser's in-page search), and fill the empty fields.

Once all strings for your module are correctly translated, click on the

"Update translation" button, either at the top or the bottom of the page.

 Each field has an icon on its right. This enables you to get an

suggestion from Google Translate. You can hover the mouse over it to
see the translation, and click it to fill the field with the translation.

Automatic translation are not always accurate; use with caution.

The translations are saved in a new file, fr.php (or languageCode.php, which

is generated by PrestaShop and looks like this:

mymodule.tpl

<?php

global $_MODULE;

$_MODULE = array();

$_MODULE['<{mymodule}prestashop>mymodule_2ddddc2a736e4128ce1cdfd22b041e7f']

= 'Mon module';

$_MODULE['<{mymodule}prestashop>mymodule_d6968577f69f08c93c209bd8b6b3d4d5']

= 'Description de mon module';

$_MODULE['<{mymodule}prestashop>mymodule_c66b10fbf9cb6526d0f7d7a602a09b75']

= 'Cliquez sur ce lien';

$_MODULE['<{mymodule}prestashop>mymodule_f42c5e677c97b2167e7e6b1e0028ec6d']

= 'Cliquez-moi \!';

$_MODULE['<{mymodule}prestashop>mymodule_page_c0d7cffa0105851272f83d5c1fe63

a1c'] = 'Bienvenue dans ma boutique \!';

 This file must not be edited manually! It can only be edited through
the PrestaShop translation tool.

Now that we have a translation, we can click on the French flag in the
front-office (provided the language has indeed been installed), and get the
expected result: the module's strings are now in French.

They are also translated in French when the back-office is in French.

 The translated strings can only be taken into account by the PrestaShop

tool, the PHP and TPL files have to be located at the root of the
module's folder.

Creating the module's back-office tab, and its class

In this section you will learn how to give your module its own tab or sub-
tab, in a matter of minutes.

Follow these steps:

1. Add a new table to your PrestaShop database, named ps_test. Give

it two fields:

o id_test (INT 11)

o test (VARCHAR 32)

2. Create a blank file named Test.php in PrestaShop's /classes folder.

3. Add the following lines to that file:

Test.php

<?php

class Test extends ObjectModel

 {

 /** @var string Name */

 public $test;

 protected $fieldsRequired = array('test');

 protected $fieldsSize = array('test' => 64);

 protected $fieldsValidate = array('test' => 'isGenericName');

 protected $table = 'test';

 protected $identifier = 'id_test';

 public function getFields()

 {

 parent::validateFields();

 $fields['test'] = pSQL($this->test);

 return $fields;

 }

 }

?>

1. Create a blank file named AdminTest.php in PrestaShop's /admin/tabs.

2. Add the following lines to that file:

AdminTest.php

<?php

include_once(PS_ADMIN_DIR . '/../classes/AdminTab.php');

class AdminTest extends AdminTab

 {

 public function __construct()

 {

 $this->table = 'test';

 $this->className = 'Test';

 $this->lang = false;

 $this->edit = true;

 $this->delete = true;

 $this->fieldsDisplay = array(

 'id_test' => array(

 'title' => $this->l('ID'),

 'align' => 'center',

 'width' => 25),

 'test' => array(

 'title' => $this->l('Name'),

 'width' => 200)

);

 $this->identifier = 'id_test';

 parent::__construct();

 }

 public function displayForm()

 {

 global $currentIndex;

 $defaultLanguage = intval(Configuration::get('PS_LANG_DEFAULT'));

 $languages = Language::getLanguages();

 $obj = $this->loadObject(true);

 echo '

 <script type="text/javascript">

 id_language = Number('.$defaultLanguage.');

 </script>';

 echo '

 <form action="' . $currentIndex . '&submitAdd' . $this->table .

'=1&token=' . $this->token . '" method="post" class="width3">

 ' . ($obj->id ? '<input type="hidden" name="id_' . $this->table .

'" value="' . $obj->id . '" />' : '').'

 <fieldset><legend>' . $this-

>l('Profiles') . '</legend>

 <label>'.$this->l('Name:').' </label>

 <div class="margin-form">';

 foreach ($languages as $language)

 echo '

 <div id="name_' . $language['id_lang'|'id_lang'] . '"

style="display: ' . ($language['id_lang'|'id_lang'] == $defaultLanguage ?

'block' : 'none') . '; float: left;">

 <input size="33" type="text" name="name_' .

$language['id_lang'|'id_lang'] . '" value="' . htmlentities($this-

>getFieldValue($obj, 'name', intval($language['id_lang'|'id_lang'])),

ENT_COMPAT, 'UTF-8') . '" />[*]

 </div>';

 $this->displayFlags($languages, $defaultLanguage, 'name', 'name');

 echo '

 <div class="clear"></div>

 </div>

 <div class="margin-form">

 <input type="submit" value="' . $this->l(' Save ') . '"

name="submitAdd' . $this->table . '" class="button" />

 </div>

 <div class="small">[*] ' . $this->l('Required field') .

'</div>

 </fieldset>

 </form> ';

 }

 }

?>

Put the files online, then create the tab by going to the "Employee" tab,
then its "Tabs" sub-tab. Click the "Add new" button, and fill-in the fields
with the class' name, "AdminTest". Do not confuse "class" with "modules"!

Choose an icon (like one from the FamFamFam pack), choose where the
tab should go, and save. You're set! Now start customizing it to your

needs!

Troubleshooting

If your module does not work as expected, here are a few ways to find
help.

PrestaShop official forum

Join our forum at http://www.prestashop.com/forums/, and search for an
answer using the relevant keywords. If your search needs refining, use

the advanced search form. And if your search doesn't yield anything
useful, create a new thread, where you can be as wordy as necessary

when writing your question; you will need to registered first.

http://www.famfamfam.com/lab/icons/silk/
http://www.prestashop.com/forums/

Some forums keep certain threads pinned on top of all threads; they

contain some useful information, so be sure to read them through.

Our bug-tracker

If it turns out your issue stems from a PrestaShop bug rather than your
code, please do submit the issue in the PrestaShop bug-tracker:
http://forge.prestashop.com/ (you will need to register). This enables you

to discuss the issue directly with the PrestaShop developers.

Official PrestaShop websites

URL Description

http://www.prestashop.com Official website for the PrestaShop
tool, its community, and the company

behind it.

http://addons.prestashop.com Marketplace for themes and modules

http://www.prestabox.com Host your shop with us!

PrestaShop Development
standard

Summary

PHP PHP SQL

Variable names Strings Table names

Assignments Comments SQL query

Operators Return values

Statements Call

Visibility Tags

Method / Function names Indentation

Enumeration Array

Objects / Classes Bloc

Defines Security

Keywords Limitations

Constants Other

Configuration variables

PHP

http://forge.prestashop.com/
http://www.prestashop.com/
http://addons.prestashop.com/
http://www.prestabox.com/

Variable names

1. Corresponding to data from databases: $my_var
2. Corresponding to algorithm: $my_var

3. The visibility of a member variable does not affect its name: private
$my_var

Assignments

1. There should be a space between variable and operators:
2.
3. $my_var = 17;
4. $a = $b;

Operators

1. "+", "-", "*", "/", "=" and any combination of them (e.g. "/=") need
a space between

left and right members
2.
3. $a + 17;
4. $result = $b / 2;
5. $i += 34;

6. "." don't have space between left and right members
7.
8. echo $a.$b;
9. $c = $d.$this->foo();

 Recommendation
For performance reasons, please don't abusing of use of

concatenation.

10. ".=" need a space between left and right members
11.

12. $a .= 'Debug';

Statements

1. if, elseif, while, for: presence of a space between the if keyword and
the bracket

2.
3. if (<condition>)
4. while (<condition>)

5. When a combination of if and else are used and that they should

both return a value, the else has to be avoided.
6.
7. if (<condition>)
8. return false;

9. return true;

 Recommendation
We recommend one return per method / function

10. When a method/function returns a boolean and the current
method/function return depends on it, the if statement has to be
avoided

11.

12. public aFirstMethod()

13. {

14. return $this->aSecondMethod();

15. }

16. Tests must be grouped by "entity"
17.

18. if ($price AND !empty($price))

19. [...]

20. if (!Validate::$myObject OR $myObject->id === NULL)

21. [...]

Visibility

1. The visibility must be defined everytime, even when it is a public

method.
2. The order of the method properties should be: visibility static

function name()
3.
4. private static function foo()

Method / Function names

1. Method and function name always begins with a lowercase character
and each following words must begin with an uppercase character

(CamelCase)
2.
3. public function myExempleMethodWithALotOfWordsInItsName()

4. Braces introducing method code have to be preceded by a carriage
return

5.
6. public function myMethod($arg1, $arg2)
7. {
8. [...]

9. }

10. Method and function names must be explicit, so such function

names as "b()" or "ef()" are completly forbidden.

 Exceptions
The only exceptions are the translation function called "l()" and

debug functions "p()", "d()".

Enumeration

Commas have to be followed (and only followed) by a space.

protected function myProtectedMethod($arg1, $arg2, $arg3 = null)

Objects / Classes

1. Object name must be singular
2.
3. class Customer

4. Class name must follow the CamelCase practice except that the first
letter is uppercase

5.
6. class MyBeautifulClass

Defines

1. Define names must be written in uppercase
2. Define names have to be prefixed by "PS_" inside the core and

module
3.
4. define('PS_DEBUG', 1);
5. define('PS_MODULE_NAME_DEBUG', 1);

6. Define names does not allow none alphabetical characters. Except

“_”.

Keywords

All keywords have to be lowercase

e.g. as, case, if, echo, null

Constants

Constants must be uppercase except for "true" and "false" and “null”

which must be lowercase
e.g. "ENT_NOQUOTE", "true"

Configuration variables

Configuration variables follow same rules as defines

Strings

Strings have to be surrounded by simple quotes, never double ones

echo 'Debug';

$myObj->name = 'Hello '.$name;

Comments

1. Inside functions and methods, only the "//" comment tag is allowed
2. After the "//" comment tag, a space “// Comment“ is required
3.
4. // My great comment

5. The "//" comment tag is tolerated at the end of a code line
6.

7. $a = 17 + 23; // A comment inside my exemple function

8. Outside funcions and methods, only the "/" and "/" comment tags
are allowed

9.
10. /* This method is required for compatibility issues */

11. public function foo()

12. {

13. // Some code explanation right here

14. [...]

15. }

16. PHP Doc Element comment is required before the method
declarations

17.

18. /**

19. * Return field value if possible (both classical and multilingual

fields)

20. *

21. * Case 1 : Return value if present in $_POST / $_GET

22. * Case 2 : Return object value

23. *

24. * @param object $obj Object

25. * @param string $key Field name

26. * @param integer $id_lang Language id (optional)

27. * @return string

28. */

29. protected function getFieldValue($obj, $key, $id_lang = NULL)

 For more informations

For more informations about the PHP Doc norm:
http://manual.phpdoc.org/HTMLSmartyConverter/HandS/phpDocumentor/tutorial_tags.pkg.html

Return values

1. Return statement does not need brackets except when it deals with
a composed

expression
2.
3. return $result;
4. return ($a + $b);
5. return (a() - b());
6. return true;

7. Break a function
8.
9. return;

Call

Function call preceded by a "@" is forbidden but beware with function /

method call with login / password or path argmuments.

myfunction()

// In the following exemple we put a @ for security reasons

@mysql_connect([...]);

http://manual.phpdoc.org/HTMLSmartyConverter/HandS/phpDocumentor/tutorial_tags.pkg.html

Tags

1. An empty line has to be left after the PHP opening tag
2.
3. <?php
4.
5. require_once('my_file.inc.php');

6. The PHP ending tag is forbidden

Indentation

1. The tabulation character ("\t") is the only indentation character

allowed
2. Each indentation level must be represented by a single tabulation

character
3.
4. function foo($a)
5. {
6. if ($a == null)

7. return false;

8. [...]

9. }

Array

1. The array keyword must not be followed by a space
2.
3. array(17, 23, 42);

4. The indentation when too much datas are inside an array has to
follow the following

5.
6. $a = array(
7. 36 => $b,

8. $c => 'foo',

9. $d => array(17, 23, 42),

10. $e => array(

11. 0 => 'zero',

12. 1 => $one

13.)

14.);

Bloc

Brasses are prohibited when they define only one instruction or a
statement combination

if (!$result)

 return false;

for ($i = 0; $i < 17; $i++)

 if ($myArray[$i] == $value)

 $result[] = $myArray[$i];

 else

 $failed++;

Security

1. All user datas (datas entered by users) have to be casted.
2.
3. $data = Tools::getValue('name');
4.
5. $myObject->street_number = (int)Tools::getValue('street_number');

6. All method/function's parameters must be typed (when Array or
Object) when received.

7.
8. public myMethod(Array $var1, $var2, Object $var3)

9. For all other parameters they have to be casted each time they are
use, but not when

sent to other methods/functions
10.

11. protected myProtectedMethod($id, $text, $price)

12. {

13. $this->id = (int)$id;

14. $this->price = (float)$price;

15. $this->callMethod($id, $price);

16. }

Limitations

1. Source code lines are limited to 120 characters
2. Functions and methods lines are limited to 80 with good

justifications

Other

1. It's forbidden to use a ternary into another ternary

2. We recommend to use && and || into your conditions
3. Please don't use reference parameters

SQL

Table names

1. Table names must begin with the PrestaShop "DB_PREFIX" prefix
2.
3. [...] FROM `'. _DB_PREFIX_.'customer` [...]

4. Table names must have the same name as the object they reflect
e.g. "ps_cart"

5. Table names have to stay singular
e.g. "ps_order"

6. Language data have to be stored in a table named exactly like the
object's one and with the suffix "_lang" e.g. "ps_product_lang"

SQL query

1. Keywords must be written in uppercase.

2.
3. SELECT `firstname`
4. FROM `'. _DB_PREFIX_.'customer`

5. Back quotes ("`") must be used around field names and table
names

6.
7. SELECT p.`foo`, c.`bar`
8. FROM `'. _DB_PREFIX_.'product` p, `'. _DB_PREFIX_.'customer` c

9. Table aliases have to be make by taking the first letter of each
word, and must be

lowercase
10.

11. SELECT p.`id_product`, pl.`name`

12. FROM `'. _DB_PREFIX_.'product` p

13. NATURAL JOIN `'. _DB_PREFIX_.'product_lang` pl

14. When conflicts between table aliases occur, the second

character has to be taken too
15.

16. SELECT ca.`id_product`, cu.`firstname`

17. FROM `'.DB_PREFIX.'cart` ca, `'. _DB_PREFIX_.'customer` cu

18. Indentation has to be done for each clause
19.

20. $query = 'SELECT pl.`name`

21. FROM `'.PS_DBP.'product_lang` pl

22. WHERE pl.`id_product` = 17';

23. It’s forbidden to make a join in WHERE clause

